Trirectangular Tetrahedron Study Joe Bartok
The Rules of the Trirectangular Tetrahedron Game
The Hip rafter are perpendicular to one another.
The sums of the Plan Angles are right angles: DDa + DDb = 90°
dda + ddb = 90°
For a given roof, the sum of the angles on the roof surface between the Hip rafter ridge lines is
fixed:
Σ P2 = arctan (cos SS ÷ tan DDa) + arctan (cos SS ÷ tan DDb)
Backing Angles Formulas:
C5a = arctan (sin R1a ÷ tan DDa) C5b = arctan (sin R1b ÷ tan DDb)
The Backing Angles are also related by the formulas: C5a = arctan (cos Σ P2 ÷ tan C5)
C5b = arctan (cos Σ P2 ÷ tan C5a)
The angles at the Hip rafter feet – R4B, R5B and A5B – are defined by the formulas for a standard
Hip-Valley Roof.
For a given roof of this type: R5Ba = R5Bb
Projected Right Angles
= 90° ± arctan (cos dd ÷ tan ß)
= 90° ± arctan (cos dd tan R1)
= 90° + arctan (cos 40° ÷ tan 72°) = 103.97707°
= 90° – arctan (cos 40° tan 18°) = 76.02293°
ρ = r1 – arctan (cos dd tan R1)
= 30.40596° – arctan (cos 40° tan 18°) = 16.42889°
Blade Bevel for YDIH
= Blade Bevel along ß Line
= 90° – dd = 50°
Blade Bevel for ZDIH
= Blade Bevel along μ Line
= arctan (cos Projected Right Angle tan dd)
= arctan (cos 76.02293° tan 40°) = 11.45699°
= arccos (sin ß ÷ sin Projected Right Angle)
= arccos (sin 72° ÷ sin 76.02293°)
= 11.45699°
hα = hρ = .286364
hα = √ (sin MIT)2 + (cos MIT tan μ) 2 – 2 sin MIT cos MIT tan μ cos α
hρ = √ 1 + (cos MIT ÷ cos μ) 2 – 2 cos MIT cos ρ ÷ cos μ
Non-Rectangular Sections Calculator Examples
Plan Angles at Peak arbitrarily set at 40° and 50°
18° Hip Entries:
Plan Angle at Peak = 40°
μ = arctan (cos 18° tan 40°) = 38.59096°
ß = 72° (90° – R1)
α = 26.56505° (C5)
Returns (rounded off):
MIT = 38.30262° ... Angle on Roof Surface
BEV = 59.59404° ... 90°– Section Plane Angle
ρ = 16.42889° ... Section Plane Angle – (90° – 76.02293°) Projected Right Angle = 103.97707°
Supplementary Angle = 76.02293°
Blade Angle along MIT Line = 9.49278°
Blade Angle along ß Line = 50.00000°
Blade Angle along μ Line = 11.45699°
27.7323° Hip Entries: Plan Angle at Peak = 50°
μ = arctan (cos 27.7323° tan 50°) = 46.52926°
ß = 62.2677° (90° – R1)
α = 16.04506° (C5)
Returns (rounded off):
MIT = 43.42969° (Angle on Roof Surface)
BEV = 59.59404° ... 90°– Section Plane Angle)
ρ = 11.73413° ... Section Plane Angle – (90° – 71.32817°) Projected Right Angle = 108.67183°
Supplementary Angle = 71.32817°
Blade Angle along MIT Line = 9.49278°
Blade Angle along ß Line = 40.00000°
Blade Angle along μ Line = 20.88368°
90° Hip Run intersection bisected (45°)
Equal Hip Rafter Widths (solution by Sim Ayers)
18° Hip Entries:
Plan Angle at Peak = 45°
μ = arctan (cos 18° tan 45°) = 43.563° (R4P)
ß = 72° (90° – R1)
α = 26.56505° (C5)
Returns (rounded off):
MIT = 42.64537° ... Angle on Roof Surface
BEV = 58.97305° ... 90°– Section Plane Angle
ρ = 18.08763° ... Section Plane Angle – (90° – 77.06068°) Projected Right Angle = 102.93932°
Supplementary Angle = 77.06068°
Blade Angle along MIT Line = 6.93760°
Blade Angle along ß Line = 45.00000°
Blade Angle along μ Line = 12.62142°
27.7323° Hip Entries: Plan Angle at Peak = 45°
μ = arctan (cos 27.7323° tan 45°) = 41.51305° (R4P)
ß = 62.2677° (90° – R1)
α = 16.04506° (C5)
Returns (rounded off):
MIT = 39.08693° ... Angle on Roof Surface
BEV = 58.97305° ... 90°– Section Plane Angle
ρ = 10.63443° ... Section Plane Angle – (90° – 69.60748°) Projected Right Angle = 110.39252°
Supplementary Angle = 69.60748°
Blade Angle along MIT Line = 6.93759°
Blade Angle along ß Line = 45.00000°
Blade Angle along μ Line = 19.21087°
Standard Hip-Valley Angles
18° Hip Entries:
Plan Angle at Peak = 90° – DD = 58.28252°
μ = arctan (cos 18° tan 58.28252°) = 56.98260° (R4P)
ß = 72° (90° – R1)
α = 26.56505° (C5)
Returns (rounded off):
MIT = 54° (P2 ... Angle on Roof Surface)
BEV = 58.28253° (90°– SS ... Section Plane Angle)
ρ = 22.02375° (SS – R5P)
Projected Right Angle = 99.69372° (90° + R5P)
Supplementary Angle = 80.30628° (90° – R5P) Blade
Angle along MIT Line = 0.00000°
Blade Angle along ß Line = 31.71748° (90° – DD ... Blade Bevel along 90° – R1)
Blade Angle along μ Line = 15.24016° (A5P ... Blade Bevel along R4P)
27.7323° Hip Entries:
Plan Angle at Peak = Peak = 90° – DD = 31.71748°
μ = arctan (cos 27.7323° tan 31.71748°) = 28.68049° (R4P)
ß = 62.2677° (90° – R1)
α = 16.04506° (C5)
Returns (rounded off):
MIT = 27.73230° (P2 ... Angle on Roof Surface)
BEV = 58.28253° (90°– SS ... Section Plane Angle)
ρ = 7.62264° (SS – R5P)
Projected Right Angle = 114.09484° (90° + R5P)
Supplementary Angle = 65.90516° (90° – R5P) Blade
Angle along MIT Line = 0.00000°
Blade Angle along ß Line = 58.28252° (90° – DD ... Blade Bevel along 90° – R1)
Blade Angle along μ Line = 14.16082° (A5P ... Blade Bevel along R4P)
The Hip rafter are perpendicular to one another.
The sums of the Plan Angles are right angles: DDa + DDb = 90°
dda + ddb = 90°
For a given roof, the sum of the angles on the roof surface between the Hip rafter ridge lines is
fixed:
Σ P2 = arctan (cos SS ÷ tan DDa) + arctan (cos SS ÷ tan DDb)
Backing Angles Formulas:
C5a = arctan (sin R1a ÷ tan DDa) C5b = arctan (sin R1b ÷ tan DDb)
The Backing Angles are also related by the formulas: C5a = arctan (cos Σ P2 ÷ tan C5)
C5b = arctan (cos Σ P2 ÷ tan C5a)
The angles at the Hip rafter feet – R4B, R5B and A5B – are defined by the formulas for a standard
Hip-Valley Roof.
For a given roof of this type: R5Ba = R5Bb
Definitions of Angles, Formulas
and an Example Calculation
SS = Common Rafter Slope Angle
= 31.71748°
DD = Plan Angle at Hip Rafter Foot
= 31.71748°
dd = Plan Angle at Hip Rafter Peak
= 40°
α = C5 = Hip Rafter Backing Angle
= 26.56505°
β = 90° – R1
= 90° – Hip Rafter Slope Angle
= 72°
μ = arctan (sin β tan dd) = arctan (cos R1 tan dd)
arctan (sin 72° tan 40°) = 38.59096°
r1 = Section Plane Slope Angle
= arctan (tan SS sin (DD + dd))
= arctan (tan 31.71748° sin (31.71748° + 40°))
= 30.40596°
Blade Bevel for XDIH
= Blade Bevel along MIT Line
= Section Plane Backing Angle
= arctan (sin R1 ÷ tan (DD + dd))
= arctan (sin 30.40596° ÷ tan (31.71748° + 40°))
= 9.49278°
Projected Right Angles
= 90° ± arctan (cos dd ÷ tan ß)
= 90° ± arctan (cos dd tan R1)
= 90° + arctan (cos 40° ÷ tan 72°) = 103.97707°
= 90° – arctan (cos 40° tan 18°) = 76.02293°
ρ = r1 – arctan (cos dd tan R1)
= 30.40596° – arctan (cos 40° tan 18°) = 16.42889°
Blade Bevel for YDIH
= Blade Bevel along ß Line
= 90° – dd = 50°
Blade Bevel for ZDIH
= Blade Bevel along μ Line
= arctan (cos Projected Right Angle tan dd)
= arctan (cos 76.02293° tan 40°) = 11.45699°
= arccos (sin ß ÷ sin Projected Right Angle)
= arccos (sin 72° ÷ sin 76.02293°)
= 11.45699°
hα = hρ = .286364
hα = √ (sin MIT)2 + (cos MIT tan μ) 2 – 2 sin MIT cos MIT tan μ cos α
hρ = √ 1 + (cos MIT ÷ cos μ) 2 – 2 cos MIT cos ρ ÷ cos μ
Non-Rectangular Sections Calculator Examples
Plan Angles at Peak arbitrarily set at 40° and 50°
18° Hip Entries:
Plan Angle at Peak = 40°
μ = arctan (cos 18° tan 40°) = 38.59096°
ß = 72° (90° – R1)
α = 26.56505° (C5)
Returns (rounded off):
MIT = 38.30262° ... Angle on Roof Surface
BEV = 59.59404° ... 90°– Section Plane Angle
ρ = 16.42889° ... Section Plane Angle – (90° – 76.02293°) Projected Right Angle = 103.97707°
Supplementary Angle = 76.02293°
Blade Angle along MIT Line = 9.49278°
Blade Angle along ß Line = 50.00000°
Blade Angle along μ Line = 11.45699°
27.7323° Hip Entries: Plan Angle at Peak = 50°
μ = arctan (cos 27.7323° tan 50°) = 46.52926°
ß = 62.2677° (90° – R1)
α = 16.04506° (C5)
Returns (rounded off):
MIT = 43.42969° (Angle on Roof Surface)
BEV = 59.59404° ... 90°– Section Plane Angle)
ρ = 11.73413° ... Section Plane Angle – (90° – 71.32817°) Projected Right Angle = 108.67183°
Supplementary Angle = 71.32817°
Blade Angle along MIT Line = 9.49278°
Blade Angle along ß Line = 40.00000°
Blade Angle along μ Line = 20.88368°
90° Hip Run intersection bisected (45°)
Equal Hip Rafter Widths (solution by Sim Ayers)
18° Hip Entries:
Plan Angle at Peak = 45°
μ = arctan (cos 18° tan 45°) = 43.563° (R4P)
ß = 72° (90° – R1)
α = 26.56505° (C5)
Returns (rounded off):
MIT = 42.64537° ... Angle on Roof Surface
BEV = 58.97305° ... 90°– Section Plane Angle
ρ = 18.08763° ... Section Plane Angle – (90° – 77.06068°) Projected Right Angle = 102.93932°
Supplementary Angle = 77.06068°
Blade Angle along MIT Line = 6.93760°
Blade Angle along ß Line = 45.00000°
Blade Angle along μ Line = 12.62142°
27.7323° Hip Entries: Plan Angle at Peak = 45°
μ = arctan (cos 27.7323° tan 45°) = 41.51305° (R4P)
ß = 62.2677° (90° – R1)
α = 16.04506° (C5)
Returns (rounded off):
MIT = 39.08693° ... Angle on Roof Surface
BEV = 58.97305° ... 90°– Section Plane Angle
ρ = 10.63443° ... Section Plane Angle – (90° – 69.60748°) Projected Right Angle = 110.39252°
Supplementary Angle = 69.60748°
Blade Angle along MIT Line = 6.93759°
Blade Angle along ß Line = 45.00000°
Blade Angle along μ Line = 19.21087°
Standard Hip-Valley Angles
18° Hip Entries:
Plan Angle at Peak = 90° – DD = 58.28252°
μ = arctan (cos 18° tan 58.28252°) = 56.98260° (R4P)
ß = 72° (90° – R1)
α = 26.56505° (C5)
Returns (rounded off):
MIT = 54° (P2 ... Angle on Roof Surface)
BEV = 58.28253° (90°– SS ... Section Plane Angle)
ρ = 22.02375° (SS – R5P)
Projected Right Angle = 99.69372° (90° + R5P)
Supplementary Angle = 80.30628° (90° – R5P) Blade
Angle along MIT Line = 0.00000°
Blade Angle along ß Line = 31.71748° (90° – DD ... Blade Bevel along 90° – R1)
Blade Angle along μ Line = 15.24016° (A5P ... Blade Bevel along R4P)
27.7323° Hip Entries:
Plan Angle at Peak = Peak = 90° – DD = 31.71748°
μ = arctan (cos 27.7323° tan 31.71748°) = 28.68049° (R4P)
ß = 62.2677° (90° – R1)
α = 16.04506° (C5)
Returns (rounded off):
MIT = 27.73230° (P2 ... Angle on Roof Surface)
BEV = 58.28253° (90°– SS ... Section Plane Angle)
ρ = 7.62264° (SS – R5P)
Projected Right Angle = 114.09484° (90° + R5P)
Supplementary Angle = 65.90516° (90° – R5P) Blade
Angle along MIT Line = 0.00000°
Blade Angle along ß Line = 58.28252° (90° – DD ... Blade Bevel along 90° – R1)
Blade Angle along μ Line = 14.16082° (A5P ... Blade Bevel along R4P)
Komentar
Posting Komentar