Tilted Valley Rafters
Das neue Buch vom alten Wissen der Schiftung
The new book on the ancient knowledge Schiftung
The new book on the ancient knowledge Compound Joinery
The new book on the ancient knowledge Roof Framing
The new book on the ancient knowledge Roof Framing Geometry
The new book on the ancient knowledge Roof Framing
The new book on the ancient knowledge Roof Framing Geometry
by Bernd Küppers
More images and information on the book can be found at this link.
Image from Bernd's Facebook page on Shiftung.
Verkanteter Kehlsparren in German = Tilted-Canted- Rotated Valley Rafter
Looking at page 52 in his book I decided it was time to study the valley rafters rotated into the roof surface plane. The same geometric techniques used for hip rafters rotated into the roof surface plane can also be used for the valley rafters rotated into the roof surface plane. Some of the geometry used for valley rafters rotated into the roof surface plane is empirical-type knowledge. Information gained by means of observation, experience, or experiment. From this empirical knowledge we know the valley jack rafters miter head cut will be 90° and the bevel cut, top cut, will be the same as the jack rafter bevel angle for plumb hip-valley rafters.
Looking at page 52 in his book I decided it was time to study the valley rafters rotated into the roof surface plane. The same geometric techniques used for hip rafters rotated into the roof surface plane can also be used for the valley rafters rotated into the roof surface plane. Some of the geometry used for valley rafters rotated into the roof surface plane is empirical-type knowledge. Information gained by means of observation, experience, or experiment. From this empirical knowledge we know the valley jack rafters miter head cut will be 90° and the bevel cut, top cut, will be the same as the jack rafter bevel angle for plumb hip-valley rafters.
We also have a language problem when we're studying Verkanteter Kehlsparren or Verkanteter Gratsparren . What do we call each side of the canted hip or valley rafter rotated into the roof surface plane.
Looking Michel Verdon's post on
Principes du dévers: la sauterelle
or
Principles of cant: the grasshopperhe labels each side of the rotated hip rafter in plan view as A for the side of the roof the hip rafter is rotated into and the canted side as B the DP side of the hip rafter.
In this drawing of the rotated hip rafter the Upper Claw Angle for the jack rafter on the DP side of the hip rafter is 12.11976°.
In this drawing of the rotated hip rafter the Upper Claw - Miter Angle for the jack rafter on the TC side of the hip rafter is 90.00°.
In this drawing of the rotated valley rafter the Upper Claw Angle for the jack rafter on the DP side of the hip rafter is 52.00°, same as the roof slope angle, and the Lower Claw Angle is 12.11976°.
The Lower Claw Angle is 12.11976° for the jack rafter on the DP side of the rotated valley rafter.
Same as the Upper Claw angle for the jack rafter on the DP side of the rotated hip rafter.
DP = Dévers De Pas .... need a German name for this side of the canted hip rafter.
TC = Trait Carré = Perpendicular .... need a German name-word -- senkrecht ?
I purpose labeling all canted hip or valley rafters in plan view as TC, for the side the hip-valley rafter is rotated into, and DP as the side of the hip-valley rafter that's canted-Tilted from plumb.
Example for the TC side of the hip-valley rafter is rotated into the roof surface plane:
Plumb hip-valley rafter
Jack Rafter Miter Angle = 33.69° = Roof Slope Angle
Jack Rafter Bevel Angle = 39.76°
Rotated hip-valley rafter
Jack Rafter Miter Angle = 90.00°
Jack Rafter Bevel Angle = 39.76°
For equal pitched roofs for the canted-DP side of the hip-valley rafter:
Plumb hip rafter
Jack Rafter Miter Angle = 33.69° = Roof Slope Angle
Jack Rafter Bevel Angle = 39.76°
Rotated hip rafter
Jack Rafter Lower Claw Angle = Roof Slope Angle
Jack Rafter Bevel Angle = 39.76°
So the only angle we need to draw out or calculate for the jack rafters for the rotated hip rafter is the Jack Rafter Upper Claw Angle on the DP side of the hip rafter.
Since the canted-tilted valley rafter is just an upside down hip rafter the only angle we need to calculate is the Jack Rafter Upper Lower Angle on the DP side of the valley rafter.
Drawing from one of my studies on the hip rafter rotated into the roof surface plain using more of the French technique "l'art du Trait" rather than the German Shiftung technique. Some times the German Shiftung roof framing geometry technique for developing the geometry of a compound joint just has too many development lines. Here in this drawing, you can use my Axiom #3 for the line that develops the Upper Claw Angle on the jack rafter on the DP side of the hip rafter. It would develop the jack rafter Lower Claw Angle for the DP side of the valley rafter.
Roof Framing Geometry Proposition – Axioms # 3:
The intersection of the DP Lines of two rafters define the line for the upper claw angle on the rafter.
Roof Framing Geometry Proposition – Axioms # 3:
The intersection of the DP Lines of two rafters define the line for the upper claw angle on the rafter.
In this drawing of the rotated hip rafter the Upper Claw - Miter Angle for the jack rafter on the TC side of the hip rafter is 90.00°.
In this drawing of the rotated valley rafter the Upper Claw Angle for the jack rafter on the DP side of the hip rafter is 52.00°, same as the roof slope angle, and the Lower Claw Angle is 12.11976°.
The Lower Claw Angle is 12.11976° for the jack rafter on the DP side of the rotated valley rafter.
Same as the Upper Claw angle for the jack rafter on the DP side of the rotated hip rafter.
You can also use my tréteaux roof framing calculator to verify these angles.
Trèteaux Angles: P16a-DP
P16a-DP = Adjacent Side Jack Rafter Miter Angle on DP Side Of Hip Rafter on Face Perpendicular To Roof Surface, Lower Claw Angle ... this would be the Upper Claw angle for the jack rafter on the DP side of the rotated valley rafter.
P16a-DP = Adjacent Side Jack Rafter Miter Angle on DP Side Of Hip Rafter on Face Perpendicular To Roof Surface, Lower Claw Angle ... this would be the Upper Claw angle for the jack rafter on the DP side of the rotated valley rafter.
Trèteaux Angles: P17a-DP
P17a-DP = Adjacent Side Jack Rafter Miter Angle on DP Side Of Hip Rafter on Face Perpendicular To Roof Surface, Upper Claw Angle... this would be the Lower Claw angle for the jack rafter on the DP side of the rotated valley rafter.
P17a-DP = Adjacent Side Jack Rafter Miter Angle on DP Side Of Hip Rafter on Face Perpendicular To Roof Surface, Upper Claw Angle... this would be the Lower Claw angle for the jack rafter on the DP side of the rotated valley rafter.
Trèteaux Angles: P18a-DP
P18a-DP = Adjacent Side Jack Rafter Bevel Angle on DP Side Of Hip Rafter on Face Set in Roof Surface
This would be the back bevel, top cut, for the jack rafter on the DP side of the rotated valley rafter.
Komentar
Posting Komentar